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ON SINGULARITIES OF THE STRESS FUNCTION AT THE CORNER POINTS 

OF THE T~~S~E~E CR~S-SECTION OF A TWISTED BAR 

WITH A THIN REINFORCING LAYER* 

N.Kh. ~~I~X~ and S.A. NAZAROV 

The study of twisting of prismatic bars with a thin reinforcing layer is reduced to 
the solution of the third boundary-value problem for Poisson's equationin the cross- 
sectional region of the bar /I/. However, the solution obtained by analytic or 
numerical methods does not always allow us to determine the singularities of the 
stresses near the corner points of the profile of the bar. The present article is 
devoted to a study of the asymptotic behavior of the solution of the third boundary- 
value problem for a Laplacian operator in a region with a corner point on the con- 
tour, and on this basis, the direct determination of the asymptotic properties of 
the stresses and coefficients of the stress intensity at the corner points of a 
transverse cross-section ofatorsionbarwith a thin reinforcing layer. 

1. Asymptotic properties of the solutions of the third boundary-value pro- 
blem for the Laplacian operator near the corner point of the contour. 
l?Statement of problem. Suppose Q isasubregionof Fwith a compact closure aand bound- 
ary m smooth everywhere other than at the origin 0. We suppose that in a unit neighborhood 
about the point OI the region P coincides with the angle & = fs = (z~,$) E R%:PE (0, +-oaf, 
f3 E (0, a)), where (r, 0) are polar coordinates and (O,&C]~ o is the opening of the angle. 
In 8 we consider the boundary-value problem 

where of is an outer normal and fi a positive function fran C” (a\ 0) that admits of the re- 
presentation 

p(z)= &*+VhfiI.(B)+ O(r*+ym”l), r-+0 (1.2) 

Here {Ye} is a strictly increasing sequence of real numbers; &. ~C?([o,a[); and m is an 
arbitrary natural number. We further assume that (1.2) may be termwise differentiated, 

In the case vo<or the conditions for the normal solvability of the problem (1.1) ?and 
the asymptotic behavior of its solutions follow from general results /2-S/ on elliptical 
boundary-value problems in regions with conical points. However, if VO> 0 and, consequently, 

B(x) =0(r)* A and 1 j,jKa are the principal (as P-+ 0) parts of the differential operators 

occurring in equations (1.1) - Thus in the "limiting" fr = 0) problem the principal (with re- 
spect to the differential properties) part of the boundary conditions vanishes. Later in this 
point we will establish conditions for the normal solvability of the boundary-value problem 
(1.1) when the boundary conditions at the corner point degenerate, and will also find asympto- 

tic expansions of its solutions. Note that the case in which the limiting equation in & is 
of decreasing order for general elliptical boundary-value problems in cones has been previous- 
ly studied in /6-77/. 

2O. Functional spaces. AS in /2,4/, we let V,S(Q) and V~‘fa(c%2) denote spaces of func- 
tions with norms 

1 V; v; (P) 11 = $11 fl+j-*v; Wd (62) II , II W; VS“’ (a&2) II = 

%I1 
FJ-J-‘b; W,’ (ass) i + / I+.@; wg+“* (a-2) I/ , s 3 0,1 f 2 . . . 

- 
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Further, suppose that V?,(Q) is a space of functions in a,for which the expression 

(I u: vi:: (52) II = (I u; vi-1 62) II + II +k e 03 II, fi > 0 
is finite. 

3O. Problem with a small parameter. Suppose that R23 o is a regionwith smooth 

boundary 861 (in the class C") and compact closure. We consider the boundary-value problem 

AU (E, x) = F (e, z), SE0.v (1.3) 

U (s,.2) + eB (5) $s,.)= @((E,z), ZE&l 

where C" (ao)~ B is a positive function and E a small parameter. 
TO study the boundary-value problem (1.31, we use, as iS USUallY done, the Schwartz 

method of "freezing" the coefficients. Without dwelling on the usual details, we will simply 

state the results. 
We let H:(o) denote the S.L. Sobolev space wz8(e,) provided with the equivalent norm 

II u; H,“(d II = II U; W,” (4 ll + E 11 u; IV,’ (co) 11 
We further introduce the sets 

Mu*= {zEK,: 2-k-p-1 < r < 2-k+*), (k = 1, 2, . . .; p = 0,1) 

Lemma 1. If 1 = 0, 1, 2,... , the mapping 

i ( A; i+E~(+&}: tiGe (0) -+ H,’ (co) x W:+“* (am) 

is an isomorphism and uniformly continuous with respect t0 E. 

Corollary 1. Suppose the functions L7,F and @ belong tothespaces W~(Mol), W: (Afol) 
and W~/Z(ajJ{,* n aK,), respectively, and satisfy the equations 

AU (e, x) = F (E,z), x E MC?; U (e, x) + e B (2) g (e, 5) = 

@ (e, 5), 5 E aMa” n aK, 

Then, the inequality is valid 

II U; I&+' (~~~9 II < c {II F; H,' (MO') II + )I 0; W:+'lr (MO' fl 

a&) II + II u; L* W,‘) III 

and in which the constant c is independent of e, U,F and @. 

4O. Auxiliary assertions. 

Lemma 2. Suppose u E WiIL (8) f-j l’g_,, (Q) is a solution of the problem (1.1) withright 
sides 1~ V&(Q) and cp~ V:‘/’ (aQ). Then, exist the inequality 

II u;XA (9) II G c {II~; vlf. volt t II (P; VA++ (an) II + II 24 EL-? w Ii (1.4) 

and where the constant c is independent of u. 

Proof. By virtue of well-known (cf., i.e. /8/) properties of boundary-value problems 
in bounded domains, we need only find an estimate for the quantitiy UG vpy. ((2. K,:rd W))II 
expressedinturnsoftherightsideof (1.4). Moreover, we may limit ourselves to the case t3(~)= 
r""'fio (fl). 

Following the substitution r-y = 2%, the sets ML* turn into MOP, and the functions 
uh. (9) = Y (2-$f=9 satisfy the equations 

Ay~h-(u) = 2-2"f(2-'y), 1/E ill,'; ub (br) - 2-"'V'fi(e)l I/ I’+“~ iv) = f# (2-“y), y E MO1 n 8~ a 

Together with Corollary 1, we thus obtain the estimate 

II ulr; H$Q @Jo’) II B c P-‘” Ilf (@.I; H& @Jo7 II + 

I/ F (2-‘.); I$+“’ MJc?) /I + II y;: Lz (Mol) II} 

(1.5) 

Multiplying relations (1.5) by 2k('+l-0) and returning to the use of the coordinates t, 
using the inequalities 2-">r in MkO and 2-"<4r in Mk', and summing the resulting estimates 
with respect to k= 1,2,3,..., we find that 
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LenInN 3. Suppose v'~~(i;l)~ u is a solution of the problem (l.l), and let fE v',+,, (9). 
cpE V~'(Q);min {v~,n/a)> 6> 0; Z> 1; the numbers 2 f 1 - u are not 
multiples of n/a . 

and 2 + 1 - a + 6 
Then a) if the segment (I + I- 6, 1 + 1 - (I + 6) does not contain any 

numbers of the form pnla (‘p an integer), then U E v$$,y (Q); b) if pnia~(l+l-IJ, 1-j-1- 
a+@, then zbl=u- CWnfa sin (q&h)~ Vz, ‘ol fQj, where c is some constant. 

PrOOf. By the definitions of the spaces, we have 

I E v$\ (Q), f @a vfr:;_* m. ‘p E iy:* VW 

Therefore, by /2/, in case a) UE %$&,(&2), and in case b) , U%E Y$i+ (a). We need only use the 
estimate (1.4) for the functions ti or + 

Lemma 4. (cf. Lemma 3.1 from /4/j. Let f(z) = 1-9~*Y(t?,hr), q(z)= rW(0,In~), when 

Y(E$t),CD(9,t) are polynomials of degree k with coefficients in the space c"([~),o]). Then 
a polynomial E: (0,t) with coefficients in C"([O,o]) may be found such that 

(A @“I% (e, ht r)) - rr-I@ (8, inr), (i + fi (3 &) @a (fI, h F)} - 

rW(8, lnr)]EV~,v~(R)XV~~(BP) 

where (I.< l --y - VO. The degree of the polynomial 8 is equal to k if y+ rip/a and k + ? if 
y = npta. 

5O. Normal salvability of boundary-value problem. 

Theorem 1. The boundary-value problem (1.1) with operator 

A = {A, (1 + fI (I) -$)} : Vz, @) -v:, v+ (9 x v?’ (a@ (1.6) 

is normally solvable if and only if the number I f I- o is not a multiple of nia (i.e., 

1+1- (I: + pa/a for any integer p). 

Proof. Finite-dimensionality of the kernel. If UE Vz$,(Q) is a solution of the homo- 
geneous problem (l.l), by virtue of Lemmas 2 and 3, we may find a number &>O such that 

IbE vl+B o+1-.-s,*,(Q)* Since the embedding Vp+~il)c Y~,~,~(Q) is compact, then dimkerti <+cu. 

Left regularizer. 

such that the mapping 

We construct the operator 

R: &&2) x vY'e(an)- Vfrf"y. (Q) 

~-AM';,,(P) x v~~*(an)-.t"$~(a) x vy"'* (a~) 

(1.7) 

(1.8) 

is completely continuous. 
From Lemma 1 and Corollary 1 it follows that there exist operators 

P(k): ~~_~~(~*I~ X ~~'~(d~*'R Sk-,) -t ~~~,(~~'} 

such that the mappings 

11.9) 

x (lnlyl) i- (A$ (1 +B (2%) -&)laM,~ner~}x(ln/yl) P(k): 11.101 

~~_~~(~~*I) x ~~'~(~~~~1 n alr,t -&&,(MO1) x rvrl*(anr,* n a~,) 

are continuous, fuxther the norms of the operators (1.9) and (1.10) are bounded bY constant 
and independent of k. Here X EC" ((-4, 2)); X (t) = i if t E IO, 1): X Et) f X (L f 2) = 1 if f e (0, 31. 

We introduce the operator 
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T (f, cp) (z) =z x (zk - In r) (P (W Cf. cp) v%H I_*/“+ 
k-2 

m 

5 (In;) L (f, q4 (4; 6 (4 = 1 - Is x (t + W 
k-2 

where L is the left regularizer in problem (1.1) and in Q fl @ER*: 4 2) /a/. We may verify 

that the mapping 

T:v;&(R)X Vy’.(an)+v’,fz, (Q) (1.11) 

is continuous and, in addition, the operator 

(1 - AT)8 : v;, y, (52) x vb+“a (an) w v;$ v) (Q) x vZJs PQ) (1.12) 

is also bounded. 
We define R by the formula 

R= ?'+T(l-AAT)+ T(i -AT)a+(1--5 (lnf))P*(l -AT)* 

where D-l is the operator inverse to the operator 

{A, i leK,l:v~~(Q,-+v;;(Q, X V;$'(aQ) (1.13) 

(which exists by virtue of'previous results /2/ and the above conditions). Clearly, the map- 
ping (1.7) is continuous. Moreover, by (l.ll)- (1.13) the operator 

I-AR=-[[A,++)], (i-t(I~~))~(t,~leo](l-AT)” 

acts in the space 

which is embedded compactly in Vk,V,(Q)x Vz/z(80). Therefore the mapping (1.8) is completely 
continuous. 

Closure of subspace ImA. We need only verify that the following inequality is valid: 

for any function I( ES, where S is the direct complement of kerA with respect to VFv,tt.(C2). We 

assume that the estimate (1.14) is false. Then a sequence (u,} of elements of the space 
V:!., (L-2) may be found such that I/U; V&(O)//= i , . 0 while the right side of inequality (1.14) tends 
to zero as i-rot. We find a subsequence that converges weakly in Vpvt:,(0) to some function IL. 
Without any limitation on generality, we may assume that the sequence (kj) itself possesses 
this property. AU = 0 . Setting 3 = --RA u,, we have 

I+1 
Since /IAuJ; Vhv,(0) x Vet* II-+0 , then 

11 “J: v,, “, (0) 11 -, O. From the properties of the operator proved above, we obtain the inclusion 

A @J + 3) E &, ,., (0) X v:k (80) 

where 6>0. Consequently, we have valid the chain of inequalities 

IIUjfvj-u~ v~,.,(n)Uac(Urrj+u,-u; , , v:t b-au+ 

I A ('j -tuj); 

1'0 
o-1-2 (Q)!l+IIA (uj+uj)T 

(1.15) 

converges strongly in It follows from (1.15) that, in particular, the sequence 
v'.t"v. (0) to lb. 

yJ + “J 
But then uEkerA , and we have obtained a contradiction. 

The three properties of the boundary-value problem (1.1) we have proved demonstrate that 
the normal solvability conditions of the theorem stated therein are sufficient. That they 
are necessary may be established precisely as in /2/. The theorem is proved. 

Note that this technique of proving normal solvability may be carried over without any 
changes to the general elliptical boundary-value problem with degenerate boundary conditions 
at a conical point. 
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6'. Asymptotic solutions. 
admit of the asymptotic expansions 

We assume that the right sides of f and Cp of problem ~L..LJ 

where {&,} is a strictly increasing sequence of positive numbers; f,, (6, t) and % 0% t) are 
polynomials in t with coefficients in C" ([O, al); and the residues satisfy the inclusion re- 
lations 

We let {Yn} denote an ordered sequence of numbers V that may be represented in the form 

il.181 

where J and nj are arbitrary non-negative integers and p is an integer that exceeds a (u - 
1 - I)lsi. 

From Lemmas 3 and 4, it follows the theorem: 
Theorem 2. The solution UE VpY.(Q) of problem (1.1) with right sides that admitofthe 

expansions (1.16) and (1.17) satisfies the formula 

where ~~(8, t) are polynomials in t with coefficients in C" ([O,a]);N is an arbitrary natural 
number: and UN* E VgN (Q). If, in addition, degf,, ==degrp, = 0 and if the number 1 -+- 1 - CT + 
q/a appears among the numbers (1.18) only when p -q and nl = 0, the degrees dsgu,, of 
the polynomials %((e,t) are also equal to zero. 

7O. Unique solvability of boundary-value problem. since g(z)>0 rn (1.1) when- 
ever XEL@ ‘L, 0, then the problem (1.1) with homogeneous boundary condition (1 .e., up E 0) 

W,l ffz) is elliptical and, consequently, uniquely salvable in Wa1 (Q) for any f= A,@). 
By virtue of this obvious fact, the following assertion regarding the dimension of the sub- 
spaces ker.4 and coker A may be derived from Theorems 1 and 2. 

Theorem 3. Suppose that Y,,> 0 andthatthenumber I-+-l--a is not a multiple of 
da. Then: 

a) if cr>r!+i-n/a, the cokernel of the operator (I. 6) is trivial, while dimkerA = 
[(a - I - 1)alnl; 

bl if (I( t + 1 + n/u,the kernalof the operator (1.6) is trivial, anddim.cokerA=[(l + 1 - CI) 
ainl.It follows from Theorem 3 that, in particular, the problem 11.1) is uniquely solvable in 
the space VP+ (Q) for any f E @e,,w (a) ad cp E K? @Q) if u E (2 + 1 - da, 1 + 1 + da), 
i.e., for these values of CI the mapping (1.6) is an isomorphism. 

2. Features of the stress function at the corner pc$nts of the cross-sec- 
tion of a torsion bar with thin reinforcing coating. . Statementofproblem. 
It is known /I/ that the torsion problem for a prismatic bar reinforced by a thin layer re- 
duces to the determination of a stress function U in the cross-sectional region nthatsatis- 
fies the equations 

AU Ixl = - 2G,xE n (2.1) 

(2.21 

where G and G, are the shear moduli for the materials of the bar and layer: 6 (x) 1s the thick- 
ness of the layer at the point .rE %l measured along the outer normal n; and 6 (r) is a 

small quantity. suppose the simply connected region 8 whose characteristic dimensionisscaled 
to unity has as boundary a contour with earner point 0 and angle aCE (O,?sl. We will assume 
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that 6 (0) = 0. Previous results /2/ andresultsofSect.1 of the present paper may be used 
to study the influence of the nature and degree of thinning of the layer near the 
corner point on the asymptotic behavior of the stress function u. More precisely, we will 

find the form of the asymptote u as r-+0 and as a function of the parameter ?~(O,im) 
which characterizes the behavior of Unear the comer point 

6 (5) = f&v + 0 (r)+m)for r-+ 0, 5 E r* 

where &,and U are positive constants, and r_ and r+ denote the parts of the contour 8Q cor- 
responding to the values 6 = 0 and 8 = a of the angular variable. 

2'. fiuxiliary assertions, 

Lemma 5. The nonzero roots of the equation 

sin (aa) 11 - (kg) *6_6+1 + h cos (ha) g (6, + 6_) =I 0 (2.3) 

and only the nonzero roots are the eigenvalues of the'spectral problem 

Al ?"Qb(e)=o, BE 10,al; 

@(Qi_gE,-$(+=O, o=++ 

(2.4) 

These numbers are real, have single multiplicity , and are associated with the eigenfunc- 
tions 

(I, (0) = sin (he) +kg&_ cos (he) (2.5) 

Proof. If h= 0, the boundary-value problem (2.4) is single-valued solvable. If Ajo, 
the linear combination aaih(h~)-t~cos(a~) is a solution of the equation from problem (2.4) al- 
ong the segment IO, al * Bearing in mind the boundary conditions in (2.41, we find that this 
function is nonzero and satisfies problem (2.4) only if b= hg&a+O where h#O is a root of 
equation (2.3). Since the problem (2.4) is self-adjoint, all its eigenvalues are real. In 
addition, the same eigenfunctions (2.5) correspond to the eigenvalues h and --h, and, conse- 
quently, there are no adjoint vectors. 

The next three assertions may be verified by dixect computation. 

Lemma 6. The particular solution VI of the boundary-value problem 

AV(z) = - 26,s~ K,,; V(x)= 0, ZE aK, 
at the angle K, = {x E R2 : r> O,O E (0,a)) has the form 

Gr*sinBsin(a-_)(rosa)-', @+x/2, 3~12 
V%(X)= Grz{tsin28 tnr +@cos2S) (acos2a)-r- sin%), 

@= n/2, 3nf2 

Lemma 7. The particular solution Vt of the boundary-value problem 

A~(x)=O, +EI%'~;~(z)=~~, XEC% 

0= -++ 

is determined by means of the equation (k is an integer) 

Lemma 8. The particular solution Y, of the boundary-value problem 

(2.6) 

(2.7) 
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is specified by the formulas 

G?{ssinB+(+ + 2b_gu)cos2f3--&~ 

’ h,#2,j=O,*l,.. . 
Gr’{b lnr [sin28 + 2g6_cos20] + IfL(9)}, hk- 2 

(2.8) 

Here h, are the roots of equation (2.3); the constants a and A have the form 

.=$[I - co9 24~ + 28,g sin 2a] [sin 2a (1 - 4g%+6_) + 

2g (6_ + 6,) cos 2q’ 

A=-(1 - co9 2a + 26-g sin 2a) [ 2ct (1 + 4gpS_S) - 

+sin4a(l - 4g*6_*) f &$_(I - cos4a)]-1 

where 'P is a solution of the boundary-value problem for the ordinary differential equation 

z(e) + 4Y ((3) = - 26(2h(sin20 + fgS_cos 29]+ I), OE[O,U] 

‘r(e)-bg6*$&(8)=0, e=$-++ 

3O. Asymptotic behavior of solutions at a corner point. Depending on the 
parameter y , one of the operators 

is the principal part of the 
The asymptotic formulas 

3/ in case (2.9), from /1,2/ 
suits of Sect.1. 

if vE(O,l) (2.9) 
a 

i 1 k & -&) ldK if y=l (2.10) 
a 

llaxf, if y>l (2.11) 

boundary conditions (2.2). 
presented below for the function G follow, for example, from /2, 
in case (2.10), and in case (2.11) are consequences of the re- 

Let O<y<l. Then the following representations hold: 

C f CV3 (4 + 0 (r ix ), a < n (1 - y)-’ 

u (x) = C + CV3 (5) + Clrnla cos a ne + o(rr*), a=51(1 - y)_’ (2.12) 

C + CIrnla cos -;;- ne +o(ra), a>n(l-yy)-’ 

where V, is the function of (2.7); C and C, are given certain constants; and Xj are arbitrary 
numbers that satisfy the inequalities 

x1<c+l- Y, x1< sic, xnc (J + 1 - y, xz < 2nla. 
x3 < 1 - y, x3< 2nla 

If y=lr then for function ff satisfies the relations 

c C&l [sin h&l + hlgS_ cos h+3] + 0 (rxt), 
u (x) = 

i 

hI < 2 
V,(x) + C2r2 [sin 20 + 2g6_ cos 2el+ 0 (rx*), hI = 2 (2.13) 
V$(x)+ o(r% Al>2 

where h, is the smallest positive root of equation (2.3) ; k,, the next largekt positive root 

of (2.3); G,, a given certain constant; V,, the function (2.8); and ~1, arbitrary numbers 
that satisfy the inequalities 

X1<2,x1<~,+cr,X1(h,,X;<2+u, X*<h,,X3<h~,~<2+a 

Finally, if y> 1, we find from Theorem 2 that 

C,P@ sin (d/a) + 0 (rxl), a > n/2 
VI(z)+ f&r* sin28 +o(rr$ a=n/2 

V,(z) + otr% a<n/2 

(2.14) 
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function of (2.6); Ca, is some constant; and Xl, numbers that obey the 

x1< 2, x1< ZnJa, x1< y - 1 + nla, zec y + 1, x1< 4, 
x3<y + 1, x3< da 

Let us emphasize that formulas (2.12)- (2.14) includes the case a = & which corres- 
ponds to the smooth boundary aQ, but also to a degeneracy of the boundary conditions at the 

point 0, i.e., 6 (0) = 0. 
Note an interesting fact that follows from formula (2.12). That is, ifO<y<l and 

a<n, the tangential stresses in a torsion bar with a thin reinforcing layer that are ex- 
pressed in terms of the stress function C will have singularities at the comer points of 

the bar cross-section. At first glance, this paradoxical circumstance may be attributed to 
the fact that the cross-section of a torsion bar without reinforcing layer has a departure 
angle which, because of the reinforcing layer, becomes an entrance angle. In particular, if 

y<l, the tangential stresses have singularities at the vertex of both the entrance and 
departure angles of the cross-section of a torsion bar with reinforcing layer. Then, as in 
the case of twisting of a bar without a layer, it is well known /l/ that the stresses have 
singularities only at the vertex of the entrance angle of the cross-section. 

4O. Asymptotic behavior of solutions at infinity. We present results on the 
asymptote of the solutions of the boundary-value problem 

Aw(r)=f(r), Rio, w(r)+~(~)~-r-!&r)=o, XE& (2.15) 

in a region 0 having an "angular exit" on infinity, i.e., at high values of r the region o 
coincides with the angle &,. The need for studying asymptotic expansions of solutions of 
such problems as (2.15) arises in considering torsion bars which have been strengthened by a 
thin reinforcing layer and which are in the form of a sector with lateral side of length D. 
At high values of D, the behavior of the stress function far from the vertex of the sector 
is described (cf. /9/) with the asymptotic representation of the solutionwof problem (2.15) 
when f= -2G and o=&. Note, too, that the boundary-value problem (2.15) is of the same 
type as the problem with stationary distribution of temperature in a wedge whose sides are in 
spontaneous heat exchange with the environment. To simplify the formulations, we assume that 
the right side f in problem (2.15) is finite. The necessary particular solutions at the angle 
Ka for f(z)= - 26 are presented in Lemmas 6 and 8. We also assume that when 8 = a12 f a/2 
and r> rO> 0 , we have S(X)= G*F which are achieved. Since equations (2.15) are valid 
only for bars with a thin layer, the function 6 cannot grow faster than as a linear function, 
consequently v>/ - 1. 

By means of conformal mapping, 
ed in Sect.1, lo 

the region o may be transformed into the region Q describ- 
, so that the asymptotic formulas presented above are seen as justified in 

light of the results cited in Sect.3O. Thus,when v=-_l and v>-I, the solution W of 
problem (2.15) satisfies the formulas 

W (5) = Ccn+ [sin h,O + h,g6_ cos h,Bl + 0 (t-h), r+ m 
W (5) I C(%-Na sin + + 0 (r-X), r-00 

respectively. Here C(n and I?(*) are some constants; h, and h,, the first two positive roots 
of equation (2.3); and x< min {%/a,-1 + Y + n/a). 

50. Formulas for the intensity coefficients. By means of the method of /4/, we 
now write out explicit representations for the coefficients C, occurring in the asymptotic 
formulas (2.12)- (2.14). Since the use of the method of /4/ in problems of the theory of 
elasticity has been repeatedly discussed (cf. /lo-12/j, we will discuss only one of the 
possible variants. That is, we consider the_case v> 1, a> n/2,(cf. the formula (2.14)). 

We let 5 denote a function harmonic in 52 \ 0 that satisfies the boundary conditions 

and the relation 

6(2)=rnlasin + + o(r-nl=), r-0 

There can be no doubt as to the existence of such a function. In fact, 
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where ~isatruncatingfunction equal to zero outside a small neighborhood of the point 0 and 
to unity close to this point, and s is a solution of the boundary-value problem 

~~(~)=-r~~~sin~Bq(s)-Zggrad(r-~~~sin~~grad~(~). XEQ (2.16) 

From Theorem 1 and the fact that the form generated by the problem (2.11, (2.2) is posi- 
tive-definite, it follows that the problem (2.16) is uniquely solvable in the class of func- 
tions that obey the condition z(z)= o(r-*-"/a) as r-+0. 

Applying Green's formula to the.functions 5 and U in the region Q, = (so Q: r> d} and 
passing, as is usual, to the limit as d-+0, we find that 

\ f- 2Gg (x)] d.z = Iii j {-- 2G5 (x), dr = fd’q j AU (x) 5 (xf dx = 
it ‘d - ‘d 

lirn ’ 
d-0 ai 

~(4~ (4 -+/-(x)U(x)}ds= 

‘d 

(2.17) 

Thus 

c 2-G c(x)dx 
$ i 

The function 5 is constructed by finding the solution of problem (2.16), a problem that 
represents considerable difficulty. On the other hand, if an exact or approximate solution 
of problem (2.11, (2.2) is found by some method, then its behavior near the corner point may 
be determined by means of the method proposed in /12/. Performing the computations as in 
(2.17) in the truncated sector Su,II == (XE &:D>~ r> d} for the function 2 (X) = (I^-"@ - 

D-Warn/a) sin (n8/a) we have 

26 5 Z(x)dz-- $ .$(x)U(x)ds=G (2.18) 

sii, d "sf3.0 

By means of this formula, we may find the intensity coefficient based on the values of 
U along the arc r, and the boundary of the region dQ. Note that by virtue of (2.141, 

u (I) I,lQ = 0 (r-=la+o )v CJ > 0, and the integral along aso,0 in (2.18) converges. Moreover, 

and, finally, formula (2.18) assumes the form 

c3= 

8CD’-@J f * 
-- 

n (4 - (f#c)i) II s 
-g”(x) u (2) ds 

OsD, 0 
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