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ON SINGULARITIES OF THE STRESS FUNCTION AT THE CORNER POINTS
OF THE TRANSVERSE CROSS-SECTION OF A TWISTED BAR
WITH A THIN REINFORCING LAYER™

N.Kh. ARUTIUNIAN and S.A. NAZAROV

The study of twisting of prismatic bars with a thin reinforcing layer is reduced to
the solution of the third boundary-value problem for Poisson's equation in the cross-
sectional region of the bar /1/. However, the solution obtained by analytic or
numerical methods does not always allow us to determine the singularities of the
stresses near the corner points of the profile of the bar. The present article is
devoted to a study of the asymptotic behavior of the solution of the third boundary-
value problem for a Laplacian operator in a region with a corner point on the con-
tour, and on this basis, the direct determination of the asymptotic properties of
the stresses and coefficients of the stress intensity at the corner points of a
transverse cross-section of a torsionbarwith a thin reinforcing layer.

1. Asymptotic properties of the solutions of the third boundary-value pro-
blem for the Laplacian operator near the corner point of the contour.
1°Statement of problem. Suppose Q is a subregion of R® with a compact closure ( and bound-
ary §Q smooth everywhere other than at the origin (. We suppose that in a unit neighborhood
about the point @, the region  coincides with the angle K, = {& = {(z;, 22} = R*:r<= {0, +oo),
8 = (0, a)}, where (r, 8) are polar coordinates and (0, 2z] = ¢ 1S the cpening of the angle.
In Q we consider the boundary-value problem

Au(z)=f(2), ze=; u(x)-q-ﬁ(x)%%(x):(p(x), 2= IR\ 0 (1.1)

where n is an outer normal and § a positive function from €% (ﬁ\ Q) that admits of the re-
presentation

m

B@ =3 ri"e @) +0¢m), r—0 (1.2)

Here {v;} is a strictly increasing sequence of real numbers; B, &= €7 ([0, al); and m is an
arbitrary natural number. We further assume that (1.2) may be termwise differentiated.

In the case v,<{ 0, the conditions for the nommal solvability of the problem (1.l1) and
the asymptotic behavior of its solutions follow from general results /2=5/ on elliptical
boundary-value problems in regions with conical points. However, if vo > 0 and, consequently,

B(@)=o0{), Aand 1 ke are the principal (as r-» 0) parts of the differential operators
occurring in equations (1.1). Thus in the "limiting"” (r = Q) problem the principal {(with re—
spect to the differential properties) part of the boundary conditions vanishes. Later in this
point we will establish conditions for the normal solvability of the boundary-value problem
(1.1) when the boundary conditions at the corner point degenerate, and will also find asympto-
tic expansions of its solutions. Note that the case in which the limiting equation in K, is
of decreasing order for general elliptical boundary-value problems in cones has been previous-
ly studied in /6—7/.

29, Functional spaces. As in /2,4/, we let VS (Q) and V' (8Q) denote spaces of func-
tions with norms .

VoV @ = 3 Uremr We (D] 0 Ve 00) | =
7

8

) [ roves-tng, Wyl (9Q) | + frow; Wit (0], s=0,1,2,...

=8
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Further, suppose that V') (Q) is a space of functions in @, for which the expression

Tus Vard (1 = us Vo (@)1 + | r=u; W™ (@), 6> 0
is finite.
3°. Problem with a small parameter. Suppose that R? D @ is a regionwith smooth
boundary d® (in the class C™) and compact closure. We consider the boundary-value problem

AU (e, 2)=F (e,2), rE€w; (1.3)

ol
U(e,.t)+eB(z)E(a,x)=®(e,z), € dw
where C™ (dw) = B 1is a positive function and &¢ a small parameter.

To study the boundary-value problem (1.3), we use, as is usually done, the Schwartz
method of "freezing" the coefficients. Without dwelling on the usual details, we will simply

state the results.
We let H:"(w) denote the S.L. Sobolev space W,*(w) provided with the equivalent norm

MU HS (@) | = | U;W (o) | + e || Us Wa* (0) ]
We further introduce the sets
MP={gE Ko : 2751 <r <279}, (h =1,2,...5p=0,1)
Lemma 1. 1f [=0,1,2,.., the mapping

85 (14 B @], )} B )= B @) x WE 00)

is an isomorphism and uniformly continuous with respect to &.

Corollary 1. Suppose the functions U, F and @ belong to thes

and Wt (0M! ) 0K,) » respectively, and satisfy the equations

A = . s
AU e, z) = F(e,x), z= Mo'; U, z)+eB (z)— (&, 2) =

@ (e, z), x & dM* ) 0K,
Then, the inequality is valid
I U; He® (M) | < e{l F; H, LMY |+ | @5 W™ (Mot N

Ko} | + | U; Ly (B i‘)‘}

and in which the constant ¢ is independent of &, U, F and .

4°. Auxiliary assertionms.
Lemma 2. sSuppose u < Witk (@) V%1 (Q) is a solution of the problem (1.1) with right
sides f= Vi, (Q) and ¢oe=VF™" (aQ) Then, exist the inequality
1 9% 1f,
|2 Ve (@) < el Vowl@1 + 1 03 Ve 0] + 1 45 Vs (@)

and where the constant ¢ is independent of u.

Proof. By virtue of well-known (cf., i.e. /8/) properties of boundary-value problems
in bounded domains, we need only find an estimate for the quantitiy |[ui Vg4, ((z&€ K :r<1/2))]

(1.4)

Vit (ze K ir< iz
expressed in turns of the right side of (1.4). Moreover, we may limit ourselves to the case B (z) =

"lw"ﬂo (9).
Following the substitution =z —y = 2'z, the sets M’ turn into M, and the functions

vr () = u (2-%y) satisfy the eguations

. - . o
v W) = 270 @My, y & Mot v, ) — 2B @) Ly M R ) =0 @), ve Man ok,

e MO < e @ @75 Hi, (M| + (1.5)

g @7y WEe (ALY |-+ vy Lo (M) I}

!
flo s HES

(1.5) by g¥1+-9 and returning to the use of the coordinates =z,

Multiplying relations
M+, and summing the resulting estimates

using the inequalities 2% >r in M® and 2-h < 4r in
with respect to k= 1,23, .. we find that
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1
Ju; Pt ({sta: r <T}>u<c s Vf:.v.((-“e Kot r < AN+
1o V' (fm e 0K r < 1) | 4 Jus Vo, (2 & Kyt r << 1))
The lemma is proved.
Lemma 3. suppose Vol (@)= u is a solution of the problem (1.1), and let f& Ve v (2),

€ Vo (Q); min {vo, a/a} >8> 0; 1> 1; the numbers [ +1 —o and [ 41 — ¢4 8 are not
multiples of njfa . Then a) if the segment (41— o0,l 4+ 1 — g- 8) does not contain any
numbers of the form paja (p an integer), then ye= V4, (@); b) if prlacs(i+1—0, 41—
o+8), then u; == u — Cre®/= sin (npbla) = V% o, (Q), where ¢ is some constant.
Proof. By the definitions of the spaces, we have

vevit @, feVili @, eeviliyo0)

Therefore, by /2/, in case a) ue VP 4@, and in case b), u;= Vil ,®). We need only use the
estimate (1.4) for the functions u or u:.

Lemma 4. (cf. Lemma 3.1 from /4/). Let [f(z)=r"¥ @,1nr), ¢ (x) = O (8, lnr), when
¥ @81, DO, t) are polynomials of degree %k with coefficients in the space C™ ({0, a]). Then
a polynomial E (0,1} with coefficients in C*([0, ¢]) may be found such that

{ A(rvE(@®, Inr)) —r™D (8, Inr), ( 1+ B2 —%—) (rPE®, Inr)) —
Y@, In r)} E V6w (@) XV (9R)

where 6<!—y — v. The degree of the polynomial ¥ is equal to & if Yy np/e and k + 1 if
vy = apla.

|

5°. Hormal solvability of boundary-value problem.
Theorem 1. The boundary-value problem (1.1) with operator

A={a(14+8@ )} VEL@ — Vo @xVE (00) (1.6)

is normally solvable if and only if the number [ 4+ { — ¢ is not a multiple of =n/a (i.e.,
I +1 —~ 0% pn/a for any integer p).
Proof. Finite-dimensionality of the kernel. If seVy% @) is a solution of the homo-

geneous problem (1.1}, by virtue of Lemmas 2 and 3, we may find a number $§>»>0 such that
ueE V5 4 (@), Since the embedding Vit @) c v sy (@) 1S compact, then dimkerd <+ co.

Left regularizer. We construct the operator

RV (@) VI (0Q) - Vi (@ (1.7
such that the mapping
L— ARV Q) x VI @a) - vE | (@) x Vi (o) (1.8

is completely continuous.
From Lemma 1 and Corollary 1 it follows that there exist operators

P HY o (M) X W (0M3 1) 0K,) = H S, (M) (1.9

such that the mappings
]
x{n{yh1— {Av (148 (2"‘”) -3—;)!5)“-‘061(“} % (In {yh P(k): (1.1
H‘2 e (M) X WS e Mo 8K — H;*},m (M) X Wi (oMt () 8K )

are continuous, further the norms of the operators (1.9) and (1.10) are bounded by constant
and independent of k. Here 1 eC®((—1, 2)) x @) =1 if teld,ihxW+x@¢ +2=1 if t=I0, 3L
We introduce the operator
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T (f, 9} (2) =2 1 2k —1Inr) (P (2K) (f, ) (2"%0)) T
k=2

(o) Lt oot =1 - 3 x4+ 2

k=2

where L is the left regularizer in problem (1.1) and in RN {ze R*:r<2} /8/. We may verify
that the mapping

T:V:

b (@) X VE00) 2 VG, (@) (1.11)
is continuous and, in addition, the operator

(1 — ATV (@) X VE'T 00) VS |, (@) x ViI{ (00) (1.12)

is also bounded.
We define R by the formula

1
R= T+T(1—AT)+T(1—AT)3+(1 —-g(ln—r—))D-l(i — ATP
where D1 is the operator inverse to the operator
{81 lgg ) 2 Vorh (@) =V (@) X Vi) (09) (1.13)

(which exists by virtue of previous results /2/ and the above conditions). Clearly, the map-
ping (1.7) is continuous. Moreover, by (1.11)-~ (1.13) the operator

t—ane—{[at(m )], (1—t(mt))pe o

on} (1 — ATy

acts in the space

Vf:-ll-n. v @) % Vlofl{:x (@), = = min {vy, V1 = Vo}

which is embedded compactly in V} , () X Vi#i:(90). Therefore the mapping (1.8) is completely
continuous.

Closure of subspace Imd4. wWe need only verify that the following inequality is valid:

lus VS, (< cf dus VE (@) x VE* (00) ] (1.14)

for any function ue §, where § is the direct complement of kerd with respect to VI'% Q). We
assume that the estimate (1.14) is false. Then a sequence {u;} of elements of the space
Vit (®) may be found such that ju; V§% (@)]=1 , while the right side of inequality (1.14) tends
to zero as j—oo. We find a subsequence that converges weakly in V:;f’“ () to some function u.
Without any limitation on generality, we may assume that the sequence {u;} itself possesses
this property. Since jdus; V5, @) x Vi'r@Q)|—0, then 4u=0. Setting v;= —R4 u; we have
[l g V';’v. Q) -+0. From the properties of the operator proved above, we obtain the inclusion

A (u+v) eV, @) x Ve
where §>0. Consequently, we have valid the chain of inequalities

lus+o;—u V& L @I<elu;+v,—ui VL @)+ (1.15)
JA ;4000 Voo o (@ X VEL @D <cllu;+v;—u
Vo s @A @ +v) Vi o, (@) X VELEQN

It follows from (1.15) that, in particular, the sequence u;+ v; converges strongly in
V:’v, ®) to u. But then uekers, and we have obtained a contradiction.

The three properties of the boundary-value problem (l1.l) we have proved demonstrate that
the normal solvability conditions of the theorem stated therein are sufficient. That they
are necessary may be established precisely as in /2/. The theorem is proved.

Note that this technique of proving normal solvability may be carried over without any
changes to the general elliptical boundary-value problem with degenerate boundary conditions
at a conical point.
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[o}
6~. Asymptotic solutions. we assume that the right sides of f/ and @ of problem (1..
admit of the asymptotic expansions

N

f@)= 3 ' ef, (8, 1nr) + f* (2) (1.16
N

¢(2)= 3 1" g, @ In1) + g% (2)

where {L,} is a strictly increasing sequence of positive numbers; fn® 1) and ¢,(8,8 are
polynomials in ¢ with coefficients in C™ ([0, al); and the residues satisfy the inclusion re-
lations

IN* SV iy v (R on* SV, (@ (1.17)

We let {V.} denote an ordexed sequence of numbers Y that may be represented in the form

v="n +Z”;~v or v——'———t—1+c+2n}vf (1.18)

J=aty

where J and 7n; are arbitrary non-negative integers and 2 is an integer that exceeds « (0 —
1 — b/n.

From Lemmas 3 and 4, it follows the theorem:

Theorem 2. The solution u ez Vo'l (Q) of problem (1.1) with right sides that admit of the
expansions (1.16) and (1.17) satisfies the formula

N
a(z)= % 'y (0, In7) 4+ uy* (2)
fit

where u,(0,1t are polynomials in ¢t with coefficients in C* ([0, a]); ¥ is an arbitrary natural
number; and uy* & Vpoy (Q). If, in addition, degf, ==deg ¢, = 0 and if the number / + 1 — o +
ng/e appears among the numbers (1.18) only when p =g and 2n;=10, the degrees degu, of
the polynomials gy (8,1 are also equal to zero.

7°. Unique solvability of boundary-value problem. Since B (z)>0 1in (1.1) when-
ever ze&4Q N\ O, then the problem (1.1) with homogeneous boundary condition (1.e., ¢ = 0)
Wt (Q) is elliptical and, consequently, uniquely solvable in W, (Q) for any fc= L, (Q).
By virtue of this obvious fact, the following assertion regarding the dimension of the sub~
spaces ker 4 and coker 4 may be derived from Theorems 1 and 2.

Theorem 3. Suppose that v, >0 and that the number ! -1 — ¢ is not a multiple of
/e,  Then:
a) if o'> ! + 1 —nf/a , the cokernel of the operator (1.6} is trivial, while dimker 4 =
{(g —~ 1 — 1) a/nl;

b) if o< !4 1 + n/a,the kernal of the operator (1.6) is trivial, and dim-coker A==[(1 + I — o)
a/n]. It follows from Theorem 3 that, in particular, the problem (1.1) is uniguely salvable in
the space V% (Q) for any fe= V5, (Q) and @& Vi (0Q) if o= (+ 1 —nfe, 1+ 1+ nla),
i.e., for these values of ¢ the mapping {1.6) is an isomorphism,

2. Features of the stress function at the corner points of the cross-sec-
tion of a torsion bar with thin reinforcing coating. 1°. Statement of problem.
It is known /1/ that the torsion problem for a prismatic bar reinforced by a thin layer re-
duces to the determination of a stress function U in the cross-sectional region Q that satis-
fies the equations

AU (x) = -—2G re Q (2.1)
U (2) + g8 (@) (1) =0, =% g=-f~ (2.2)

where G and 0, are the shear moduli for the materials of the bar and layer; § (z) 1s the thick-
ness of the layer at the point z & 8Q measured along the outer normal »n; and §(z)is a
small quantity. Suppose the simply connected region @ whose characteristic dimension is scaled
to unity has as boundary a contour with corner point ¢ and angle a & (0, 2r]. We will assume
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that 6 (0) == 0. Previous results /2/ andresults of Sect.1 of the present paper may be used
to study the influence of the nature and degree of thinning of the layer near the
corner point on the asymptotic behavior of the stress function /. More precisely, we will
find the form of the asymptote U as r->0 and as a function of the parameter y & (0, +oo)
which characterizes the behavior of U/ near the corner point

8 (z) = 6.7 + O (royforr— 0,z I'y
where b4, and 0 are positive constants, and I'. and I, denote the parts of the contour dQ cor-
responding to the values 8 =0 and 6 =&« of the angular variable.

A0 N P -
27, Auxiliary assertions.

.

Lemma 5. The nonzerxo roots of the equation
sin (ha) {1 — (Ag)26.6,] + Acos (M) g (6, +8) =0 (2.3)
and only the nonzero roots are the eigenvalues of the spectral problem
2 @)+ 220 0)=0, 86<10,al; (2.4)
D) £gduap 0)=0, O=—3 4
These numbers are real, have single multiplicity, and are associated with the eigenfunc-

tions
@ (0) = sin (AB) + Ag§_ cos (D) (2.5}

Proof. If = ¢, the boundary-value problem (2.4} is single-valued sclvable. If As50,
the linear combination asib (A8)-4 bcos(ud) is a solution of the equation from problem (2.4} al-
ong the segment {0, @] . Bearing in mind the boundary conditions in (2.4), we find that this
function is nonzero and satisfies problem (2.4) only if b= Agba==0 where A=0 is a root of
equation (2.3). Since the problem (2.4) is self-adjoint, all its eigenvalues are real. In
addition, the same eigenfunctions (2.5) correspond to the eigenvalues X and —A, and, conse-
gquently, there are no adjoint vectors.

The next three assertions may be verified by direct computation.

Lemma 6. The particular solution V; of the boundary-value problem

AV () = — 26,2 = Ka; V() =0, z € 9K,
at the angle K, = {z & R*:r > 0,0 < (0, @)} has the form

Grisin@sin(x— 8)(cosa)™, O3=n/2, 3n/2
Vi(z)=1{Gr*{isin 28 Inr + 8 cos 26} (& cos 20} — sin*6}, (2.6)
6=um/2, 3mr/2

Lemma 7. The particular solution Vs, of the boundary-value problem

7 - av 7‘1_?
AV (z) =0, xef\a;ﬁ'(l)‘—‘:?:*‘rs—, zes= 0K,
z ., @
=gz~

is determnined by means of the equation (k is an integer)

LAY I leos(t —~yya 4872
T—78 ‘{Tsm(i-'\»)0+ Wcos(i—y)ﬁ}
Vet {—yyosin
2 == REj B ] E
L:_Tg1{(&-4—00;:}‘)(lnrcos-igf-e—esin%ke)-}—
%sin—%ﬂ},(l——v)a:kn

(2.7

Lemma 8. The particular solution V3 of the boundary-value problem
AV (@)=—26, s&Ka V(@)kgbsge(x)=0
o 3
IE&KQV 9=..--2-——_{:-2—
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1s specified by the formulas

Gr? {a sin20 4 (-—; + 26_ga> €08 20 — -;——}

V(@)= Ay 2,j=0,41,... (2.8
Gr3{Alnrsin20 4 2¢8_cos 20} ++ ¥ (@}, A,=2

Here A; are the roots of equation (2.3); the constants ¢ and A have the form

a= - [1 — cos 2 + 28,g sin 20] [sin 2 (1 — 4g%,5.) +
2g(5_ 4+ 8,) cos 2a]™*
= — (1 — cos 2a 4 28_g sin 2a) [Za (1 + 4g%_% —

- sin 4o (1 — 4g%_%) + 2g8_ (1 — cos 4a)]“
where ¥ is a solution of the boundary-value problem for the ordinary differential equation
So-(8) + 4¥ (6) = — 26 (2A [sin28 + 2¢b_cos 26] + 1), 00, @)
¥ (0)hgby - () =0, 0=24 2

3°, Asymptotic behavior of solutions at a corner point. Depending on the
parameter ¥ , one of the operators

a .
ir?—lgGiW’M{a if ye&(0,1) (2.9)
a .
<1i€5¢ '59‘) ok, Eov=1 (2.10)
”Mfa. if y>1 (2.11)

is the principal part of the boundary conditions (2.2).

The asymptotic formulas presented below for the function U follow, for example, from /2,
3/ in case (2.9), from /1,2/ in case (2.10), and in case (2.1l) are consequences of the re-
sults of Sect.l.

Let 0 < vy << 1. Then the following representations hold:

CH+CVim) +o@®), aln(l—y)"
U(2) = C+CVg(:c)-{-C;r"/“cosf‘g+o(rh), a=n(l—y)* (2.12)

C + Cyrvi= cos -%e- +o(r), a>n(l—y)*

where V, is the function of (2.7); C and (, are given certain constants; and % are arbitrary
numbers that satisfy the inequalities

n<o+1—9y, p<aa, <o+i—y xn<?nia,
Xa<<1—7, %a<2n/a

If vy =1, then for function U satisfies the relations

{ Cor™[sin A0 -+ A1g8_cos Ai0] + o (r4), Ay <2
U(z)= Vi(z) 4 Cor®[sin 20 + 2g6_cos 20} +o(r¥s), Ay =2 (2.13)
Va(@)+o(rs), A >2
where A; is the smallest positive root of equation (2.3); A, the next largest positive root
of (2.3); C,, a given certain constant; V¥,, the function (2.8); and X;, arbitrary numbers
that satisfy the inequalities
Xx< 2' 7(1< A'l + o, 1< }"21 XI<2+0y %a <7\:z' X3<A-1, x3<2+0
Finally, if ¥ > 1, we find from Theorem 2 that

Cyr™e sin (nB/a) + o (r¥), o> n/2
Vi(x) + Car?sin20 + o (r™), a=n/2 (2.14)

U(z)=
Vi@ +o(re), ala/2
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Here V; is the function of (2.6); (,, is some constant; and ¥Xj, numbers that obey the
inequalities
1< pn<2ae, p<y—1+afa, Lp<y+1 <
X<y+1, 1< nla

Let us emphasize that formulas (2.12)— (2.14) includes the case o = @i, which corres-
ponds to the smooth boundary @Q, but also to a degeneracy of the boundary conditions at the
point 0, i.e., §(0) =0.

Note an interesting fact that follows from formula (2.12). That is, if 0 <<y<<{ and

o < 1, the tangential stresses in a torsion bar with a thin reinforcing layer that are ex-
pressed in terms of the stress function U will have singularities at the corner points of
the bar cross-section. At first glance, this paradoxical circumstance may be attributed to
the fact that the cross-section of a torsion bar without reinforcing layer has a departure
angle which, because of the reinforcing layer, becomes an entrance angle. In particular, if

v << 1, the tangential stresses have singularities at the vertex of both the entrance and
departure angles of the cross-section of a torsion bar with reinforcing layer. Then, as in
the case of twisting of a bar without a layer, it is well known /1/ that the stresses have
singularities only at the vertex of the entrance angle of the cross-section.

4°, Asymptotic behavior of solutions at infinity. we present results on the
asymptote of the solutions of the boundary-value problem

AW @)=1@), z€0, W@)+B@e I (@)=0, o (2.15)

in a region ® having an “angular exit" on infinity, i.e., at high values of r the region @
coincides with the angle K,. The need for studying asymptotic expansions of solutions of
such problems as (2.15) arises in considering torsion bars which have been strengthened by a
thin reinforcing layer and which are in the form of a sector with lateral side of length D.
At high values of D, the behavior of the stress function far from the vertex of the sector
is described (cf. /9/) with the asymptotic representation of the solution W of problem (2.15)
when f = — 26 and @ = K,. Note, too, that the boundary-value problem (2.15) is of the same
type as the problem with stationary distribution of temperature in a wedge whose sides are in
spontaneous heat exchange with the environment. To simplify the formulations, we assume that
the right side f in problem (2.15) is finite. The necessary particular solutions at the angle
Ko for f(r) = — 2G are presented in Lemmas 6 and 8. We also assume that when 0 = a/2 %+ a/2
and r>r, >0, we have §(z)= 84V which are achieved. Since equations (2.15) are valid
only for bars with a thin layer, the function § cannot grow faster than as a linear function,
consequently v 2> — 1,

By means of conformal mapping, the region @ may be transformed into the region 2 describ-
ed in Sect.l, 1° ;, so that the asymptotic formulas presented above are seen as justified in
light of the results cited in Sect.3®. Thus, when v= —1 and > — 1, the solution W of
problem (2.15) satisfies the formulas

W (z) = CO% [sin hle + Ag8_cos M8l + O (M), r— o

W (z) = C@p=n/a gjn T + o, r—oo
respectively, Here C™ and ((» are some constants; 4, and A,, the first two positive roots
of equation (2.3); and y < min {2n/a,-1 + v + n/a).

50. Formulas for the intensity coefficients. By means of the method of /4/, we
now write out explicit representations for the coefficients Cj occurring in the asymptotic
formulas (2.12)— (2.14). Since the use of the method of /4/ in problems of the theory of
elasticity has been repeatedly discussed (cf. /10-12/), we will discuss only one of the
possible variants. That is, we consider the case y>1, > /2, (cf. the formula (2.14)).

We let [ denote a function harmonic in Q \ O that satisfies the boundary conditions

@)+ 8082 ()=0, zcoQ
and the relation

L@ =rasinZ 4 o(r-/2), 0

There can be no doubt as to the existence of such a function. 1In fact,
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fait)

%

L (@) =n(2) r-"esin—— 4 z (x)

where % is a truncating function egqual to zero outside a small neighborhood of the point @ and
to unity close to this point, and z 1s a solution of the boundary-value problem

Az (Z) == = 1= sin-:—f—dn (¢) — 2 grad (1-::/& sin —?—-) grad n(zr), xz=Q (2.16)

z (z} -+ g8 (x)g—;(x)= — gb (a:)-(% {n(:c) r—"/“sin—%q-} , TR

From Theorem 1 and the fact that the form generated by the problem (2.1}, (2.2) is posi-~
tive-definite, it follows that the problem (2.16) is uniquely solvable in the class of func-
tions that obey the condition z (z) = o (r"®) as r— 0.

Applying Green's formula to the .functions ¢ and I/ in the region Q, = {ze=Q: r>d} and
passing, as is usual, to the limit as d-~0, we find that

{ (— 26t (@) dz =1im S {(— 26 ()} dz = limS AU () € (2) dis = (2.17)
* lim lim

& . 9, &,
iﬁi‘aﬁd{%"’w’""%%"’”’U“”’}d“"‘
lim | {[Sr@+ @@ re]im-

iy

- ALY
l%};(x) +e2( @) @] U {z)} ds —
{ (L @) — S0 @) @ =

rd
@

— Lim csng 22 (sin22)" o (1)} d8 = — s

Ty={z=Ky: r=4d}

Thus
C, m%tg—g L(x)dx
s

The function { is constructed by finding the solution of problem (2.16), a problem that
represents considerable difficulty. On the other hand, if an exact or approximate solutiocn
of problem (2.1}, (2.2) is found by some method, then its behavior near the corner point may
be determined by means of the method proposed in /12/. Performing the computations as in
(2.17) in the truncated sector Sy u = {x & K,: D > r > d) for the function Z{z)= (rf —
D-mfernf2) sin (nBfa) we have

26 S 7 (2)dz — 5 2 (@)U (z)ds=nCs (2.18)
Sud 9859

By means of this formula, we may find the intensity coefficient based on the values of
U along the arc I'p and the boundary of the region ¢Q. Note that by virtue of (2.14}),
U (2) g == 0 (ryo+9), ¢ > 0, and the integral along 4§,, in (2.18) converges. Moreover,

4D e
S 2 (0)dr =
Sp, s

and, finally, formula (2.18) assumes the form

8GDe 1 ¢ 9z
Com iy — % ) @U@
OSD,O
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